Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms
نویسندگان
چکیده
The fundamental operation in elliptic curve cryptographic schemes is the multiplication of an elliptic curve point by an integer. This paper describes a new method for accelerating this operation on classes of elliptic curves that have efficiently-computable endomorphisms. One advantage of the new method is that it is applicable to a larger class of curves than previous such methods. For this special class of curves, a speedup of up to 50% can be expected over the best general methods for point multiplication.
منابع مشابه
A New Double Point Multiplication Method and its Implementation on Binary Elliptic Curves with Endomorphisms
Efficient and high-performance implementation of point multiplication is crucial for elliptic curve cryptosystems. In this paper, we present a new double point multiplication algorithm based on differential addition chains. We use our scheme to implement single point multiplication on binary elliptic curves with efficiently computable endomorphisms. Our proposed scheme has a uniform structure a...
متن کاملFamilies of Fast Elliptic Curves from ℚ-curves
We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducing Q-curves—curves over quadratic number fields without complex multiplication, but with isogenies to th...
متن کاملFamilies of fast elliptic curves from Q-curves
We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the sameway asGallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducingQ-curves—curves over quadratic number fields without complex multiplication, butwith isogenies to their ...
متن کاملEasy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians
The first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms— including Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions—is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the ...
متن کاملImplementing 4-Dimensional GLV Method on GLS Elliptic Curves with j-Invariant 0
The Gallant-Lambert-Vanstone (GLV) method is a very efcient technique for accelerating point multiplication on elliptic curves with e ciently computable endomorphisms. Galbraith, Lin and Scott (J. Cryptol. 24(3), 446-469 (2011)) showed that point multiplication exploiting the 2-dimensional GLV method on a large class of curves over Fp2 was faster than the standard method on general elliptic cur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001